Cold Induces Micro- and Nano-Scale Reorganization of Lipid Raft Markers at Mounds of T-Cell Membrane Fluctuations

نویسندگان

  • Yong Chen
  • Jie Qin
  • Jiye Cai
  • Zheng W. Chen
چکیده

Whether and how cold causes changes in cell-membrane or lipid rafts remain poorly characterized. Using the NSOM/QD and confocal imaging systems, we found that cold caused microscale redistribution of lipid raft markers, GM1 for lipid and CD59 for protein, from the peripheral part of microdomains to the central part on Jurkat T cells, and that cold also induced the nanoscale size-enlargement (1/3- to 2/3-fold) of the nanoclusters of lipid raft markers and even the colocalization of GM1 and CD59 nanoclusters. These findings indicate cold-induced lateral rearrangement/coalescence of raft-related membrane heterogeneity. The cold-induced re-distribution of lipid raft markers under a nearly-natural condition provide clues for their alternations, and help to propose a model in which raft lipids associate themselves or interact with protein components to generate functional membrane heterogeneity in response to stimulus. The data also underscore the possible cold-induced artifacts in early-described cold-related experiments and the detergent-resistance-based analyses of lipid rafts at 4 degrees C, and provide a biophysical explanation for recently-reported cold-induced activation of signaling pathways in T cells. Importantly, our fluorescence-topographic NSOM imaging demonstrated that GM1/CD59 raft markers distributed and re-distributed at mounds but not depressions of T-cell membrane fluctuations. Such mound-top distribution of lipid raft markers or lipid rafts provides spatial advantage for lipid rafts or contact molecules interacting readily with neighboring cells or free molecules.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vav1/Rac-dependent actin cytoskeleton reorganization is required for lipid raft clustering in T cells

Formation of the immunological synapse (IS) in T cells involves large scale molecular movements that are mediated, at least in part, by reorganization of the actin cytoskeleton. Various signaling proteins accumulate at the IS and are localized in specialized membrane microdomains, known as lipid rafts. We have shown previously that lipid rafts cluster and localize at the IS in antigen-stimulate...

متن کامل

Minimal model of plasma membrane heterogeneity requires coupling cortical actin to criticality.

We present a minimal model of plasma membrane heterogeneity that combines criticality with connectivity to cortical cytoskeleton. The development of this model was motivated by recent observations of micron-sized critical fluctuations in plasma membrane vesicles that are detached from their cortical cytoskeleton. We incorporate criticality using a conserved order parameter Ising model coupled t...

متن کامل

Interfering With Lipid Raft Association: A Mechanism to Control Influenza Virus Infection By Sambucus Nigra

Sambucus nigra (elder) are broadly used species to treat microbial infections. Thepotential antiviral activity and mechanism action of elder fruit (EF) in human epithelium cell(A549) cultures infected with H9N2 influenza virus were determined. The effect of variousconcentrations of EF on influenza virus replication was examined by using virus titration,quantitative real time RT-PCR, fusion and ...

متن کامل

Brief report The antitumor ether lipid ET-18-OCH3 induces apoptosis through translocation and capping of Fas/CD95 into membrane rafts in human leukemic cells

The antitumor ether lipid ET-18-OCH3 promotes apoptosis in tumor cells through intracellular activation of Fas/CD95. Results of this study showed that ET-18OCH3 induces cocapping of Fas and membrane rafts, specialized plasma membrane regions involved in signaling, before the onset of apoptosis in human leukemic cells. Patches of membrane rafts accumulated Fas clusters in leukemic cells treated ...

متن کامل

The antitumor ether lipid ET-18-OCH(3) induces apoptosis through translocation and capping of Fas/CD95 into membrane rafts in human leukemic cells.

The antitumor ether lipid ET-18-OCH(3) promotes apoptosis in tumor cells through intracellular activation of Fas/CD95. Results of this study showed that ET-18-OCH(3) induces cocapping of Fas and membrane rafts, specialized plasma membrane regions involved in signaling, before the onset of apoptosis in human leukemic cells. Patches of membrane rafts accumulated Fas clusters in leukemic cells tre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS ONE

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2009